Characterization of specific domains of the cellulose and chitin synthases from pathogenic oomycetes

نویسنده

  • Christian Brown
چکیده

Some oomycetes species are severe pathogens of fish or crops. As such, they are responsible for important losses in the aquaculture industry as well as in agriculture. Saprolegnia parasitica is a major concern in aquaculture as there is currently no method available for controlling the diseases caused by this microorganism. The cell wall is an extracellular matrix composed essentially of polysaccharides, whose integrity is required for oomycete viability. Thus, the enzymes involved in the biosynthesis of cell wall components, such as cellulose and chitin synthases, represent ideal targets for disease control. However, the biochemical properties of these enzymes are poorly understood, which limits our capacity to develop specific inhibitors that can be used for blocking the growth of pathogenic oomycetes. In our work, we have used Saprolegnia monoica as a model species for oomycetes to characterize two types of domains that occur specifically in oomycete carbohydrate synthases: the Pleckstrin Homology (PH) domain of a cellulose synthase and the so-called ‘Microtubule Interacting and Trafficking’ (MIT) domain of chitin synthases. In addition, the chitin synthase activity of the oomycete phytopathogen Aphanomyces euteiches was characterized in vitro using biochemical approaches. The results from our in vitro investigations revealed that the PH domain of the oomycete cellulose synthase binds to phosphoinositides, microtubules and F-actin. In addition, cell biology approaches were used to demonstrate that the PH domain co-localize with F-actin in vivo. The structure of the MIT domain of chitin synthase (CHS) 1 was solved by NMR. In vitro binding assays performed on recombinant MIT domains from CHS 1 and CHS 2 demonstrated that both proteins strongly interact with phosphatidic acid in vitro. These results were further supported by in silico data where biomimetic membranes composed of different phospholipids were designed for interaction studies. The use of a yeast-two-hybrid approach suggested that the MIT domain of CHS 2 interacts with the delta subunit of Adaptor Protein 3, which is involved in protein trafficking. These data support a role of the MIT domains in the cellular targeting of CHS proteins. Our biochemical data on the characterization of the chitin synthase activity of A. euteiches suggest the existence of two distinct enzymes responsible for the formation of water soluble and insoluble chitosaccharides, which is consistent with the existence of two putative CHS genes in the genome of this species. Altogether our data support a role of the PH domain of cellulose synthase and MIT domains of CHS in membrane trafficking and cellular location.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chitin Synthases from Saprolegnia Are Involved in Tip Growth and Represent a Potential Target for Anti-Oomycete Drugs

Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are v...

متن کامل

Cell wall polysaccharide synthases are located in detergent-resistant membrane microdomains in oomycetes.

The pathways responsible for cell wall polysaccharide biosynthesis are vital in eukaryotic microorganisms. The corresponding synthases are potential targets of inhibitors such as fungicides. Despite their fundamental and economical importance, most polysaccharide synthases are not well characterized, and their molecular mechanisms are poorly understood. With the example of Saprolegnia monoica a...

متن کامل

Insight into the adsorption profiles of the Saprolegnia monoica chitin synthase MIT domain on POPA and POPC membranes by molecular dynamics simulation studies.

The critical role of chitin synthases in oomycete hyphal tip growth has been established. A microtubule interacting and trafficking (MIT) domain was discovered in the chitin synthases of the oomycete model organism, Saprolegnia monoica. MIT domains have been identified in diverse proteins and may play a role in intracellular trafficking. The structure of the Saprolegnia monoica chitin synthase ...

متن کامل

Cell wall chitosaccharides are essential components and exposed patterns of the phytopathogenic oomycete Aphanomyces euteiches.

Chitin is an essential component of fungal cell walls, where it forms a crystalline scaffold, and chitooligosaccharides derived from it are signaling molecules recognized by the hosts of pathogenic fungi. Oomycetes are cellulosic fungus-like microorganisms which most often lack chitin in their cell walls. Here we present the first study of the cell wall of the oomycete Aphanomyces euteiches, a ...

متن کامل

Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi.

Chitin, the structural component that provides rigidity to the cell wall of fungi is the product of chitin synthases (Chs). These enzymes are not restricted to fungi, but are amply distributed in four of the five eukaryotic 'crown kingdoms'. Dendrograms obtained by multiple alignment of Chs revealed that fungal enzymes can be classified into two divisions that branch into at least five classes,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015